UTILITY SCALE BATTERES

SAFETY MOMENT

5640 A

Short Circuit Current Per Rack X

40
Racks
Per Container

255 kA
Short
Circuit
Current

Per Container

5640 A

Short Circuit Current Per Rack X

40
Racks
Per Container

80
Pounds
Dynamite

BATTERY OVERVIEW

Energy Storage Technologies

Mechanical

- Pumped hydro
- ► CAES
- ▶ Flywheel
- ▶ LAES (liquid air energy storage)

Electromechanical

- Traditional batteries
- Flow batteries
- Lithium ion

Thermal

- Sensible Molten salt, chilled water
- ▶ Latent ice storage
- ▶ Thermochemical storage

Electrical

- Supercapacitors
- Superconducting magnetic energy storage

Chemical (Hydrogen

- ▶ Power-to-power (fuel cells, etc)
- ▶ Power-to-gas

Lithium Ion – Many Varieties

NMC

Preferred for EV market

LFP (LifePO₄)

Excellent Safety Moderate energy Low Power

NCA

High energy High power Good life High Cost Marginal Safety

Manganese

Nickel

Iron

Aluminum

Li-Ion Battery Material Cost Trends

Li-Ion Battery Manufacturing

Poland

(LG Chem WIII

China

United States

LG Chem |

South Korea

LG Chem HHIIIIH SINIIII SAMSUNG HIII

2016 Capacity

2020 Forecast

50MW, 200MWh Building

Designing a Battery System

Degradation

Increasing Heat Load

Designing a Battery System

Maintaining Capacity

5 Year

Base Capacity

10 MWh

Overbuild

2.5 MWh

Augment

1.0 MWh

Designing a Battery System

Maintaining Capacity

15 Year

Base Capacity

Overbuild

Augment

Output

Out

Justifying Energy Storage

Regulation

Spinning Reserve

Energy Time Shift (Arbitrage)

System Capacity

T&D Upgrade Deferral

Net Cost

Fixed

Variable

Net Revenue

- Can technically recycle 80% of Lilon battery
- Federal law does not mandate recycling of spent lithium-ion cells
- No economically viable recycling program exists
- Utility can pay extra to have them reduced to lower grade
- Increased demand, geopolitical unrest, societal pressures, technology advancements may change dynamics

BATTERY TECHNOLOGY

WHAT'S NEXT

Reaction Cell and Membrane

Flow vs. Li-Ion Comparison

Technology	Fixed O&M	Calendar Degradation Fixed Fee	Cycling Degradation Variable Fee	Charging Costs
Li-lon	Low Preventative Maintenance	State-of- Charge Dependent	High; Module Replacement	85% RTE
Flow	Moderate Preventative Maintenance	No Degradation	No Degradation	70% RTE

Flow vs Li-Ion Cost Comparison

